Real world evidence on the prescribing trends of glucagon-like peptide-1 agonists in UK primary care

William Hinton, Andrew McGovern, Jeremy van Vlymen, Neil Munro, Martin Whyte, Simon de Lusignan

Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK

Royal Surrey County Hospital Wiss

Aim

The use of glucagon-like peptide-1 (GLP-1) agonists in type 2 diabetes is increasing. We present a description of their current use and prescribing trends in UK primary care and compare the characteristics of people prescribed GLP-1 agonists with phase 3 trial populations.

Background

GLP-1 agonists have the dual benefits of improved glycaemic control and weight loss. Current UK guidelines suggest restriction of use of these medications predominantly to people who are overweight¹:

- BMI \geq 35kg/m² or
- BMI < 35kg/m² and adding insulin would have significant occupational implications or significant obesity-related complications which would benefit from weight loss.

Methods

A large cohort of people with type 2 diabetes (N=34,278) was identified from the University of Surrey-Lilly Real World Evidence (RWE) centre database, using routinely collected primary care data. Monthly prescription data was extracted from primary care records on the use of GLP-1 agonists in this group. We report prescription numbers over time and the demographics of people prescribed these medications compared to those of phase 3 trial populations (Table 1).

Results

Prescribing rates of GLP-1 agonists in primary care have been consistently climbing since 2008 (Figure 1). Rates in our sample were found to be increasing by 36.7 prescriptions per 10,000 people with type 2 diabetes per year. 1776 people (5.2%) had been prescribed GLP-1 agonists of whom 53.8% were male (51.1% male in aggregated clinical trials). The mean age of those prescribed GLP-1 agonists was 58.0 (SD 10.7) years (trials aggregate 57.1; SD 9.4 years). The mean BMI of 37.5 (SD 6.5) kg/m² was significantly higher than in trials $(31.8; SD 5.3kg/m^2, p<0.001)$. The proportion of people prescribed GLP-1 agonists was highest in areas of lowest deprivation (upper quintile 6.3%; 95% CI 5.8-6.8%, lower quintile 4.5%; 95% CI 4.1-5.0%).

Conclusion

GLP-1 agonists have been prescribed to over 5% of the type 2 diabetes population. They are used in practice in a population with a higher BMI than in trials. Further evidence is needed to confirm clinical effectiveness in this high BMI population.

Key findings

- GLP-1 prescribing rates are rapidly increasing.
- People prescribed GLP-1 agonists in the real world had a significantly higher BMI than people included in phase 3 trials.

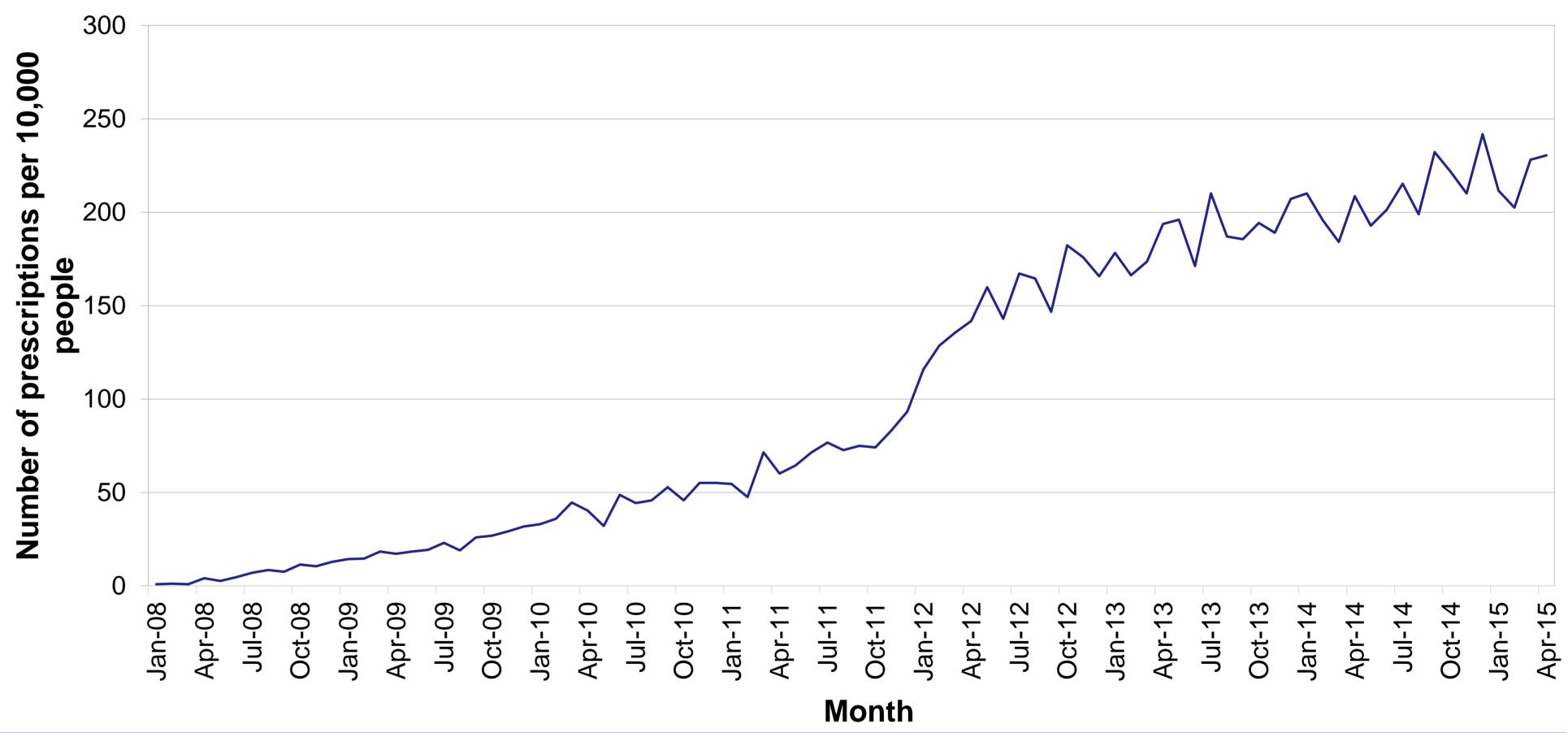


Figure 1. Rates of prescribing for GLP-1 analogues dispensed per month in a population of 34,278 people with T2DM. Prescriptions for exenatide, liraglutide, and lixisenatide are included.

Trial	Background treatment	Intervention	Trial duration	N	Males n (%)	Age mean (SD)	Baseline HbA1C % mean (%)	BMI kg/m ² mean (SD)
Buse et al (2011) ³	Glargine ± metformin, pioglitazone, or both	Exenatide vs placebo	30 weeks	259	148 (57.1)	59 (9.5)	8.4 (0.9)	33.5 (6.0)
DeVries et al (2012) ⁴	Metformin and liraglutide	Detemir vs no detemir	26 weeks (after 12 week liraglutide run-in phase)	323	177 (54.8)	57 (9.6)	8.2 (0.7)	34.4 (6.3)
_i et al (2012) ⁵	Basal insulin or premixed insulin \pm oral therapies	Liraglutide vs no liraglutide	12 weeks	84	50 (59.5)	52 (10.7)	8.7 (0.9)	30.4 (3.1)
Seino et al (2012) ⁶	Basal insulin ± sulfonylurea	Lixisenatide vs placebo	24 weeks	311	149 (47.9)	58 (10.2)	8.5 (NR)	25.2 (3.8)
Riddle et al (2013) ⁷	Glargine plus metformin ± thiazolidinedione	Lixisenatide vs placebo	24 weeks	446	222 (49.8)	56 (10.0)	7.6 (NR)	31.8 (6.3)
Riddle et al (2013) ⁸	Basal insulin ± metformin	Lixisenatide vs placebo	24 weeks	495	228 (46.1)	57 (10.0)	8.4 (NR)	32.1 (6.3)
Diamant et al (2014)9	Glargine plus metformin	Exenatide vs insulin lispro	30 weeks	510	261 (51.2)	59 (9.5)	8.2 (NR)	32.5 (5.0)
_ane et al (2014) ¹⁰	CSII or MDI ± metformin	Liraglutide vs no liraglutide	24 weeks	37	17 (45.9)	60 (10.8)	7.8 (0.7)	39.6 (6.3)
Mathieu et al (2014) ¹¹	Degludec plus metformin	Liraglutide vs insulin aspart	28 weeks	177	116 (65.5)	61 (9.2)	7.7 (0.6)	32.2 (5.1)
Rosenstock et al (2014) ¹²	Glargine ± metformin, pioglitazone, or both	Albiglutide weekly vs insulin lispro	26 weeks	566	268 (47.3)	56 (9.0)	8.5 (0.9)	NR (NR)
Shao et al (2014) ¹³	Glargine	Exenatide vs insulin aspart	12 weeks	60	29 (48.3)	43 (3.7)	7.6 (0.6)	30.4 (1.0)
De Wit et al (2014) ¹⁴	Basal insulin \pm bolus insulin or metformin, sulfonylurea, or both	Liraglutide vs no liraglutide	26 weeks	50	31 (62.0)	58 (9.1)	7.4 (0.7)	33.0 (6.1)
Totals				3,318	1,696 (51.1)	57 (9.4)	8.2 (0.8)	31.8 (5.3)

Table 1. Characteristics of GLP-1 agonist phase 3 trial participants. List of clinical trials excerpted from a recent review². NR = not reported.

References

Available online with an electronic copy of this poster at: http://www.clininf.eu/resources/posters.html

Scan for online version

Research sponsored by: **Eli-Lilly Pharmaceuticals**

